Engineering Fine Scale α Precipitation for High Strength β-Ti alloys

Graduate Student Srinivas Mantriat (UNT)
Faculty/Advisors - Raj Banerjee (UNT) & Michael Kaufman (CSM)

Program Goal

• Improve the strength and creep resistance of β-Ti alloys via a modification of heat treatment schedules to highly refine the distribution of α-precipitates

Approach

• Combine experimental methods (SEM, TEM & 3D atom probe tomography) and thermodynamic modeling to document precipitation behavior
• Characterize the deformation mechanisms in creep or tensile tested β-Ti alloys

Benefits

• Develop novel heat treatment strategies for increasing the strength and creep resistance of β or near-β high strength Ti-alloys
• Understand the role of α/β interfaces on deformation mechanisms associated with creep and tensile behavior in these alloys

Orientation of precipitates in β21S alloy

Project Duration
August 2012 to June 2015